
Parallel Code Generation of Synchronous Programs
for a Many-core Architecture

Amaury Graillat

Supervisors: Pascal Raymond (Verimag), Matthieu Moy (LIP)
Benoı̂t Dupont de Dinechin (Kalray)

Reviewers: Jan Reineke (Universität des Saarlandes)
Robert de Simone (INRIA Sophia-Antipolis, Aoste)

Examiners: Anne Bouillard (ENS Paris)
Alain Girault (INRIA Grenoble)
Christine Rochange (IRIT)

Thesis defense, November 16th, 2018

1/48

2/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

SPACE, WEIGHT, AND POWER

2/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

SPACE, WEIGHT, AND POWER

3/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

SAFETY CRITICAL SYSTEMS

Example of aircraft flight controller (control-command)

Sensors

Actuator

(altitude)
Processor

feedback

Pilot (stick)

I Time-critical: latency constraints are part of the specification (e.g. < some 10ms)
I Designed with eg., Synchronous Languages

4/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE SYNCHRONOUS DATA-FLOW LANGUAGES (1/2)

initpre

Node 6

Node 1

Node 2

Node 3

Node 4

Node 5

I Lustre (academic), Scade (industrial)
I Network of nodes

5/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE SYNCHRONOUS DATA-FLOW LANGUAGES (2/2)
Logical

in−1 = 1 in+1 = 7

on = 6 on+1 = 14on−1 = 2

......

in = 3

instant n-1 instant n instant n+1

t ×
i

o
2

I One execution is called a logical instant

Physical
in−1 in+1

on+1onon−1

......

in

StepStep Step

instant n-1 instant n instant n+1

t

I Requirement: on before in+1.
I Worst-Case Execution Time (WCET)

5/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE SYNCHRONOUS DATA-FLOW LANGUAGES (2/2)
Logical

in−1 = 1 in+1 = 7

on = 6 on+1 = 14on−1 = 2

......

in = 3

instant n-1 instant n instant n+1

t ×
i

o
2

I One execution is called a logical instant

Physical
in−1 in+1

on+1onon−1

......

in

StepStep Step

instant n-1 instant n instant n+1

t

I Requirement: on before in+1.
I Worst-Case Execution Time (WCET)

6/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

LUSTRE/SCADE DELAY OPERATOR

x2

pre

+

e=3 e=7

init=0

e

instant 1 instant 2 instant 3

t

t

t

e=1

b=1 b=4 b=9

a=1 a=2 a=3a

init=0

d d=0 d=1 d=4c=1 c=2 c=3c

b

I previous operator
I Logical/functional delay

7/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

CODE GENERATION FOR SINGLE-CORE

Node 1

Node 2

Node 3

Single-core
processor

.c

Code Generation

for each period {
i = sensors();
o = main_step(i);
actuators(o);

}

Formal semantics
Determinism

N1 N2 N3 ...

WCET

Static schedule

Synchronous languages

● Lustre, Heptagon, SCADE

● Industrial use: SCADE in Airbus A380

Static schedule

o1 = N1_step(i);
o2 = N2_step(i);
returns N3_step(o1, o2);

void main_step(i) {

}

Compilation

OK for sequential execution. What about parallel?

7/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

CODE GENERATION FOR SINGLE-CORE

Node 1

Node 2

Node 3

Single-core
processor

.c

Code Generation

for each period {
i = sensors();
o = main_step(i);
actuators(o);

}

Formal semantics
Determinism

N1 N2 N3 ...

WCET

Static schedule

Synchronous languages

● Lustre, Heptagon, SCADE

● Industrial use: SCADE in Airbus A380

Static schedule

o1 = N1_step(i);
o2 = N2_step(i);
returns N3_step(o1, o2);

void main_step(i) {

}

Compilation

OK for sequential execution. What about parallel?

8/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE KALRAY MPPA2

Cluster (=multi-core)

Core

Properties of the Kalray MPPA2:

I Cores
No complex branch prediction
Only LRU caches

I Cluster
Banked Shared-Memory (16*128ko)
Independent arbiter for each memory bank.

I Network-on-Chip (NoC) between clusters
Bandwidth limiter (Network calculus possible)

Performance + Predictability

9/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

OVERVIEW

Kalray MPPA2 Bostan

Node 3

Node 1

Node 2

Node 4

Node 5

Node 6

pre init

10/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

Part I: Semantics Preserving Parallelization

I Extraction of Parallelism
I Mapping / Scheduling
I Code Generation
I Communication Channels Implementation

Part II: Real-Time Guarantees

Part III: Evaluation and Conclusion

11/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

EXTRACTION OF PARALLELISM

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

Contribution

External tool

Executable for
Kalray

NoC Routingscheduling
Non-preemptive

Mapping +

Code Generation
System + Communication

N3

N2

N1 N4

N5
N6

pre init

Parallelism Extraction Method 1:
I In the top-level node:

I 1 node = 1 task (runnable).
I Generation of sequential code for each

node
I Similar to Architecture Description

Language (Prelude, Giotto)
Method 2: based on fork-join:

I see manuscript

11/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

EXTRACTION OF PARALLELISM

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

scheduling
Non-preemptive

Mapping +

Code Generation
System + Communication

Executable for
Kalray

Contribution

External tool

NoC Routing

N3

N2

N1 N4

N5
N6

pre init

Parallelism Extraction Method 1:
I In the top-level node:

I 1 node = 1 task (runnable).
I Generation of sequential code for each

node
I Similar to Architecture Description

Language (Prelude, Giotto)
Method 2: based on fork-join:

I see manuscript

12/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

MAPPING / SCHEDULING

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

scheduling
Non-preemptive

Mapping +

Code Generation
System + Communication

Executable for
Kalray

Contribution

External tool

NoC Routing

N3

N2

N1 N4

N5
N6

pre init

Parallelism Extraction

I Need non-preemptive static schedule
I External scheduling tool
I We can easily check the schedule

13/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

MAPPING/SCHEDULING: EXAMPLE

Node 3 Node 5

Node 1

Node 2

Node 4

Node 6

I Core 0: N1 ; N4 ; N6
Core 1: N2 ; N5
Core 2: N3

I Schedule checked using the dependency graph

14/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

CODE GENERATION

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

scheduling
Non-preemptive

Mapping +

Code Generation
System + Communication

Executable for
Kalray

Contribution

External tool

NoC Routing

N3

N2

N1 N4

N5
N6

pre init

Parallelism Extraction

I Dependencies compiled into “wait for
input”.

Sketch of code for core 0.

for each period{
wait_inputs_N1(); // N1
N1_step();
write_outputs_N1();

wait_inputs_N4(); // N4
N4_step();
write_outputs_N4();

wait_inputs_N6(); // N6
N6_step();
write_outputs_N6();

}

14/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

CODE GENERATION

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

scheduling
Non-preemptive

Mapping +

Code Generation
System + Communication

Executable for
Kalray

Contribution

External tool

NoC Routing

N3

N2

N1 N4

N5
N6

pre init

Parallelism Extraction

I Dependencies compiled into “wait for
input”.

Sketch of code for core 0.

for each period{
wait_inputs_N1(); // N1
N1_step();
write_outputs_N1();

wait_inputs_N4(); // N4
N4_step();
write_outputs_N4();

wait_inputs_N6(); // N6
N6_step();
write_outputs_N6();

}

15/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

COMMUNICATION CHANNELS

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

scheduling
Non-preemptive

Mapping +

Code Generation
System + Communication

Executable for
Kalray

Contribution

External tool

NoC Routing

N3

N2

N1 N4

N5
N6

pre init

Parallelism Extraction

I Two kinds of communications:
- instantaneous (→)
- delayed (→)

16/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

INSTANTANEOUS COMMUNICATION

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

scheduling
Non-preemptive

Mapping +

Code Generation
System + Communication

Executable for
Kalray

Contribution

External tool

NoC Routing

Dependency graph
Communication and

N1 N2 N3

N4 N5

N6

N3
pre init

N1 N4
N6N2

N5

Parallelism Extraction

void write_outputs_N2() {
copy(N4.in2, N2.out);

copy(N5.in1, N2.out);
}

void wait_for_inputs_N4() {

}

I Efficient hardware synchronization
I Software-based cache coherency

16/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

INSTANTANEOUS COMMUNICATION

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

scheduling
Non-preemptive

Mapping +

Code Generation
System + Communication

Executable for
Kalray

Contribution

External tool

NoC Routing

Dependency graph
Communication and

N1 N2 N3

N4 N5

N6

N3
pre init

N1 N4
N6N2

N5

Parallelism Extraction

void write_outputs_N2() {
copy(N4.in2, N2.out);
channel N2 N4 = true;
// + cache management
notify(core N4);
copy(N5.in1, N2.out);

}

void wait_for_inputs_N4() {
while(! channel N2 N4) {

wait();
}
channel N2 N4 = false;
while(! channel_N1_N4) {

wait();
}
channel_N1_N4 = false;
// + cache management

}

I Efficient hardware synchronization
I Software-based cache coherency

17/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

COMMUNICATION CHANNELS

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

scheduling
Non-preemptive

Mapping +

Code Generation
System + Communication

Executable for
Kalray

Contribution

External tool

NoC Routing

N3

N2

N1 N4

N5
N6

pre init

Parallelism Extraction

I Two kinds of communications:
- instantaneous (→)
- delayed (→)

18/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

DELAYED COMMUNICATION

pre

i1

i2

o1
init

o2
b

A

B
⇒

S

A B

Transformation into a SWAP + scheduling constraints.

instant n n+1n-1 n+1

S

A

X

Y

B

n+1n-1

Y

X

A

B S

instant n

Constraint: A→SConstraint: B→S

Scenario 1 Scenario 2

......A.in
S.in S.in

A.in

18/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

DELAYED COMMUNICATION

pre

i1

i2

o1
init

o2
b

A

B
⇒

B

S

A

Transformation into a SWAP + scheduling constraints.

instant n n+1n-1 n+1

S

A

X

Y

B

n+1n-1

Y

X

A

B S

instant n

Constraint: A→SConstraint: B→S

Scenario 1 Scenario 2

......A.in
S.in S.in

A.in

18/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

DELAYED COMMUNICATION

pre

i1

i2

o1
init

o2
b

A

B
⇒

A B

S

Transformation into a SWAP + scheduling constraints.

instant n n+1n-1 n+1

S

A

X

Y

B

n+1n-1

Y

X

A

B S

instant n

Constraint: A→SConstraint: B→S

Scenario 1 Scenario 2

......A.in
S.in S.in

A.in

19/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

CONCLUSION OF PART I

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

scheduling
Non-preemptive

Mapping +

Code Generation
System + Communication

Executable for
Kalray

Contribution

External tool

NoC Routing

N3

N2

N1 N4

N5
N6

pre init

Parallelism Extraction

I Semantics preserved
I Next step: Temporal Guaranties

20/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

Part I: Semantics Preserving Parallelization

Part II: Real-Time Guarantees
I Shared Memory Interference
I Time-Triggered Execution Model
I Real-Time Guarantees with Network-on-Chip

Part III: Evaluation and Conclusion

21/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

INTERFERENCE AND REACTION TIME

Core 0

Core 1

Core 15

...

Task A

E

M

M

Task ACore 0

Core 1

WCET

I Single-core: WCET is sufficient

I Multi-core: WCET+interference on shared resources
= Worst-Case Response Time (WCRT).

I WCET+interference too pessimistic in the general case
⇒ exploit the execution model in the analysis

21/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

INTERFERENCE AND REACTION TIME

Core 0

Core 1

Core 15

...

Task A

E

M

M
Task B Request Access

Access

Core 0

Core 1

Task A

WCET

Task B

Request

WCRT

I Single-core: WCET is sufficient
I Multi-core: WCET+interference on shared resources

= Worst-Case Response Time (WCRT).
I WCET+interference too pessimistic in the general case
⇒ exploit the execution model in the analysis

22/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

BANKED MEMORY

Round
Robin

Core 1

Core 0

Bank 1

Bank 0

... ...

I Private arbiter for each bank
I Available in the Kalray MPPA2 (silicon)

23/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

BANKED MEMORY IN KALRAY MPPA2

Node 3 Node 5

Node 1

Node 2

Node 4

Node 6

N1

Round
Robin

N4 N6

N2 N5

Bank 0 for core 0

Bank 1 for Core 1

......

Core 0

Core 1

I Choice: Code, input buffer, local variables are mapped in core’s bank of the core
I Interference on communication only

23/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

BANKED MEMORY IN KALRAY MPPA2

Node 6

Node 5

Node 4

Node 2

Node 1

Node 3

N1

Round
Robin

N4 N6

N2 N5Core 1

Core 0

Bank 0 for core 0

Bank 1 for Core 1

......

Core 0

Core 1

I Choice: Code, input buffer, local variables are mapped in core’s bank of the core
I Interference on communication only

23/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

BANKED MEMORY IN KALRAY MPPA2

Node 6

Node 5

Node 4

Node 2

Node 1

Node 3

N1

Round
Robin

N4 N6

N2 N5

Communication

Bank 0 for core 0

Bank 1 for Core 1

......

Core 0

Core 1

I Choice: Code, input buffer, local variables are mapped in core’s bank of the core
I Interference on communication only

23/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

BANKED MEMORY IN KALRAY MPPA2

Node 6

Node 5

Node 4

Node 2

Node 1

Node 3

N1

Round
Robin

N4 N6

N2 N5

Communication

Bank 0 for core 0

Bank 1 for Core 1

......

Core 0

Core 1

I Choice: Code, input buffer, local variables are mapped in core’s bank of the core
I Interference on communication only

How to activate tasks?

24/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

PROBLEM WITH ASAP EXECUTION

Core 0

Core 1

Task A Task B

WCET A WCET B

WCET C WCET D

Task C Task D

Deadline

Core 0

Core 1

WCET C

Task A

Task C

WCET B

WCET A

Task B

WCET D

Task D

Deadline

Do tasks B and C interfere?

Faster execution of A⇒ interference
between B and C.

Timing Anomaly

Solution: release dates for tasks
(time-triggered)

24/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

PROBLEM WITH ASAP EXECUTION

Core 0

Core 1

Task A Task B

WCET A WCET B

WCET C WCET D

Task C Task D

Deadline

Core 0

Core 1

WCET C

Task A

Task C

WCET B

WCET A

Task B

WCET D

Task D

Deadline

Faster execution of A⇒ interference
between B and C.

Timing Anomaly

Solution: release dates for tasks
(time-triggered)

24/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

PROBLEM WITH ASAP EXECUTION

Core 0

Core 1

Task A Task B

WCET A WCET B

WCET C WCET D

Task C Task D

Deadline

Core 0

Core 1

WCET C

Task A

Task C

WCET B

WCET A

Task B

WCET D

Task D

Deadline

Faster execution of A⇒ interference
between B and C.

Timing Anomaly

Solution: release dates for tasks
(time-triggered)

25/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

TIME-TRIGGERED EXECUTION MODEL

Principle

Core 0

Core 1

WCRT D

Release = 0 Release = 427

Release = 398Release = 0

Task A

WCRT A WCRT B

WCRT C

Task C Task D

Task B

I Compute a static release date when data is guaranteed to be available
I Time-Triggered execution prevents tasks from starting earlier

Implementation

void wait_inputs_N1() {
while(time() < t_period + release_date_N1){
// wait

}
}

26/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

MULTI-CORE INTERFERENCE ANALYSIS

WCET
Dependencies

Memory access
Mapping

MIA
Release dates of tasks

WCRT

Multi-Core Interference Analysis (MIA) Tool [Hamza Rihani, RTNS 2016]
www-verimag.imag.fr/Multi-core-interference-Analysis.html

www-verimag.imag.fr/Multi-core-interference-Analysis.html

26/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

MULTI-CORE INTERFERENCE ANALYSIS

WCET
Dependencies

Memory access
Mapping

MIA
Release dates of tasks

WCRT

Multi-Core Interference Analysis (MIA) Tool [Hamza Rihani, RTNS 2016]
www-verimag.imag.fr/Multi-core-interference-Analysis.html

www-verimag.imag.fr/Multi-core-interference-Analysis.html

27/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

FRAMEWORK

(WCTT)

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

scheduling
Non-preemptive

Mapping +

Code Generation
System + Communication

Network CalculusExecutable for
Kalray

WCET Analysis

MIA

Contribution

External tool

NoC Routing
+ Rate Attribution

N3

N2

N1 N4

N5
N6

pre init

Parallelism Extraction

release dates

I WCET Analysis (Otawa, AiT)
I Computation of the release dates (MIA

tool)
I Insertion in the executable.

[Submitted: Graillat A., Rihani H., Maiza C.,
Moy M., Raymond P., Dupont de Dinechin B.,
Real-Time Systems Journal]

28/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

OUR EXECUTION MODEL

I Static scheduling
I Bare metal, no interrupt, no preemption
I Banked memory mapping (1 core→ 1 bank)
I Time-triggered

Deterministic and WCRT guarantee

29/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

OVERVIEW

(WCTT)

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

scheduling
Non-preemptive

Mapping +

Code Generation
System + Communication

Network CalculusExecutable for
Kalray

MIA

Contribution

External tool

NoC Routing
+ Rate Attribution

WCET Analysis

N3

N2

N1 N4

N5
N6

pre init

Parallelism Extraction

release dates

30/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE KALRAY MPPA2’S NOC

Core 0

Cluster A

MEM

head
route data

Core 0

TX buffer

North

Local

DMA

East

Cluster B

MEM

RX buffer

head
route data

Rate limiter

Router

North
East

flow 2

East, North, East, Local

30/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE KALRAY MPPA2’S NOC

Core 0

Cluster A

MEM

head
route data

Core 0

TX buffer

North

East Local

DMA

East

Cluster B

MEM

RX buffer

head
route data

Rate limiter

Router

North

East, North, East, Local

flow 1

30/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE KALRAY MPPA2’S NOC

Core 0

Cluster A

MEM

head
route data

Core 0

TX buffer

North

East Local

DMA

East

Cluster B

MEM

RX buffer

head
route data

flow 1

Rate limiter

Router

North Full Duplex Links

flow 2

East, North, East, Local

30/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE KALRAY MPPA2’S NOC

Core 0

Cluster A

MEM

head
route data

Core 0

TX buffer

North

East Local

DMA

East

Cluster B

MEM

RX buffer

head
route data

Rate limiter

Router

North

East, North, East, Local

flow 1

rate = 1
2 B

flow 2

rate = 1
2 B

31/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

cluster

router

f1

1 2 3

4 5 6

7 8 9

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

1. Routing
Route = sequence of directions computed by
sender

Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

2. Route Selection
Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1, f2.2}, {f1.2, f2.2}...

3. Rate attribution
Fair attribution
e.g. {0.5, 0.5}, {1.0, 1.0}...

4. Network Calculus
Compute latency and buffer level

31/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

cluster

router

f1

1 2 3

4 5 6

7 8 9

East East
South

SouthLocal

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

1. Routing
Route = sequence of directions computed by
sender

Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

2. Route Selection
Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1, f2.2}, {f1.2, f2.2}...

3. Rate attribution
Fair attribution
e.g. {0.5, 0.5}, {1.0, 1.0}...

4. Network Calculus
Compute latency and buffer level

31/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f2.1

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

1. Routing
Route = sequence of directions computed by
sender
Deadlock-free algorithms (XY, Hamiltonian)

Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

2. Route Selection
Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1, f2.2}, {f1.2, f2.2}...

3. Rate attribution
Fair attribution
e.g. {0.5, 0.5}, {1.0, 1.0}...

4. Network Calculus
Compute latency and buffer level

31/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f1.2

f2.1 f2.2

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

1. Routing
Route = sequence of directions computed by
sender
Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

2. Route Selection
Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1, f2.2}, {f1.2, f2.2}...

3. Rate attribution
Fair attribution
e.g. {0.5, 0.5}, {1.0, 1.0}...

4. Network Calculus
Compute latency and buffer level

31/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f1.2

f2.1 f2.2

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

1. Routing
Route = sequence of directions computed by
sender
Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

2. Route Selection
Choose one static route per flow
Optimize performance and fairness

e.g. {f1.1, f2.2}, {f1.2, f2.2}...
3. Rate attribution

Fair attribution
e.g. {0.5, 0.5}, {1.0, 1.0}...

4. Network Calculus
Compute latency and buffer level

31/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f2.2

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

1. Routing
Route = sequence of directions computed by
sender
Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

2. Route Selection
Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1, f2.2},

{f1.2, f2.2}...
3. Rate attribution

Fair attribution
e.g. {0.5, 0.5}, {1.0, 1.0}...

4. Network Calculus
Compute latency and buffer level

31/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.2

f2.2

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

1. Routing
Route = sequence of directions computed by
sender
Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

2. Route Selection
Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1, f2.2}, {f1.2, f2.2}...

3. Rate attribution
Fair attribution
e.g. {0.5, 0.5}, {1.0, 1.0}...

4. Network Calculus
Compute latency and buffer level

31/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f2.2

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

1. Routing
Route = sequence of directions computed by
sender
Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

2. Route Selection
Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1, f2.2}, {f1.2, f2.2}...

3. Rate attribution
Fair attribution
e.g. {0.5, 0.5},

{1.0, 1.0}...
4. Network Calculus

Compute latency and buffer level

31/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.2

f2.2

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

1. Routing
Route = sequence of directions computed by
sender
Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

2. Route Selection
Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1, f2.2}, {f1.2, f2.2}...

3. Rate attribution
Fair attribution
e.g. {0.5, 0.5}, {1.0, 1.0}...

4. Network Calculus
Compute latency and buffer level

31/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.2

f2.2

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

1. Routing
Route = sequence of directions computed by
sender
Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

2. Route Selection
Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1, f2.2}, {f1.2, f2.2}...

3. Rate attribution
Fair attribution
e.g. {0.5, 0.5}, {1.0, 1.0}...

4. Network Calculus
Compute latency and buffer level

32/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

1. UNICAST ROUTING

Hamiltonian Routing

9 8 7

4 5 6

3 2 1

9 8 7

4 5 6

3 2 1

f1

Up-Network Down-Network

I Deadlock-free
I Path-Diversity

33/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

1. MULTICAST ROUTING PROBLEM

f1

9 8 7

4 5 6

3 2 1

Source

Destination

I Deadlock-free heuristic to “travelling salesman
problem”:

I One route? Tree is no possible with Kalray
architecture

I Hamiltonian: minimum of two routes

33/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

1. MULTICAST ROUTING PROBLEM

f1

9 8 7

4 5 6

3 2 1

Source

Destination

I Deadlock-free heuristic to “travelling salesman
problem”:

I One route? Tree is no possible with Kalray
architecture

I Hamiltonian: minimum of two routes

34/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

1. MULTICAST ROUTING: HAMILTONIAN

9 8 7

4 5 6

3 2 1

I Dual-Path + Hamiltonian without path diversity
(Lin et al., 1992)

I Small path diversity, we can do better.

35/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

1. MULTICAST ROUTING: HOE

Allowed
with HOE

9 8 7

4 5 6

3 2 1

Even

Odd

Even

I Hamiltonian Odd Even (Bahrebar et al.)
routing: allows some non-Hamiltonian
paths

I Our choice: Dual-Path + HOE

36/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

EVALUATION OF DEADLOCK-FREE MULTICAST ROUTING

I Minimal rate increased of up to 19% with Dual Path HOE compared to Dual Path
Hamiltonian.

36/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

EVALUATION OF DEADLOCK-FREE MULTICAST ROUTING

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dual Path+Hamiltonian

Dual Path+HOE

Minimum rate vs. Network load
(Higher is better)

Network
Load

Realistic network load

I Minimal rate increased of up to 19% with Dual Path HOE compared to Dual Path
Hamiltonian.

37/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

2. ROUTE SELECTION

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f1.2

f2.1 f2.2 f2.3

f1.3

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

I Input: set of route for each flow
I Output: one route per flow
I Maximize fairness

I Naive exploration: Enumeration all
combinations, run step 3 on each solution, keep
the best.

f2.1 f2.2 f2.3
f1.1 0.5, 0.5 0.5, 0.5 0.5, 0.5
f1.2 0.5, 0.5 1.0, 1.0 1.0, 1.0
f1.3 1.0, 1.0 0.5, 0.5 1.0, 1.0

Enumeration of 9 combinations of possible routes

38/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

2. ROUTE SELECTION

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f1.2

f2.1 f2.2 f2.3

f1.3

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

I Input: set of route for each flow
I Output: one route per flow
I Maximize fairness

I Naive exploration: Enumeration all
combinations (9 combinations)

I Exploration with pruning: Ignore combinations
with non-minimal bottleneck

I Apply rate attribution (step 3)

f2.1 f2.2 f2.3
f1.1
f1.2

1.0, 1.0 1.0, 1.0

f1.3

1.0, 1.0 1.0, 1.0

Enumeration of 4 combinations

38/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

2. ROUTE SELECTION

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f1.2

f2.1 f2.2 f2.3

f1.3

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

I Input: set of route for each flow
I Output: one route per flow
I Maximize fairness

I Naive exploration: Enumeration all
combinations (9 combinations)

I Exploration with pruning: Ignore combinations
with non-minimal bottleneck

I Apply rate attribution (step 3)

f2.1 f2.2 f2.3
f1.1
f1.2 1.0, 1.0 1.0, 1.0
f1.3 1.0, 1.0 1.0, 1.0

Enumeration of 4 combinations

39/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

Exploration vs. Our Exploration with Pruning

I Exploration with pruning (EURS)
I Works well for 11/18 test cases.

39/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

Exploration vs. Our Exploration with Pruning

I Exploration with pruning (EURS)
I Works well for 11/18 test cases.

40/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

2. ROUTE SELECTION

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f1.2

f2.1 f2.2 f2.3

f1.3

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

I Input: set of route for each flow
I Output: one route per flow
I Maximize fairness

I Naive exploration: Enumeration all
combinations (9 combinations)

I Our Exploration with pruning: Ignore
non-minimal bottleneck (4 combinations)

I Our LP-based Heuristic:
I Consider all alternative routes at once

1. Attribute fair rates

2. Remove smallest alternative routes
3. Enumerate the 3 combinations

40/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

2. ROUTE SELECTION

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f1.2

f2.1 f2.2

f1.3
1
4

1
4

1
4

1
4

1
2

1
4

f2.3

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

I Input: set of route for each flow
I Output: one route per flow
I Maximize fairness

I Naive exploration: Enumeration all
combinations (9 combinations)

I Our Exploration with pruning: Ignore
non-minimal bottleneck (4 combinations)

I Our LP-based Heuristic:
I Consider all alternative routes at once

1. Attribute fair rates

2. Remove smallest alternative routes
3. Enumerate the 3 combinations

40/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

2. ROUTE SELECTION

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f1.2

f2.1 f2.2

f1.3
1
4

1
4

1
4

1
4

1
2

1
4

f2.3

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

I Input: set of route for each flow
I Output: one route per flow
I Maximize fairness

I Naive exploration: Enumeration all
combinations (9 combinations)

I Our Exploration with pruning: Ignore
non-minimal bottleneck (4 combinations)

I Our LP-based Heuristic:
I Consider all alternative routes at once

1. Attribute fair rates
2. Remove smallest alternative routes

3. Enumerate the 3 combinations

40/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

2. ROUTE SELECTION

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f1.2

f2.1 f2.2

f1.3

f2.3

2
3

1
3

1
3

1
3

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

I Input: set of route for each flow
I Output: one route per flow
I Maximize fairness

I Naive exploration: Enumeration all
combinations (9 combinations)

I Our Exploration with pruning: Ignore
non-minimal bottleneck (4 combinations)

I Our LP-based Heuristic:
I Consider all alternative routes at once

1. Attribute fair rates
2. Remove smallest alternative routes

3. Enumerate the 3 combinations

40/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

2. ROUTE SELECTION

cluster

router

f1

1 2 3

f2

4 5 6

7 8 9

f1.1

f1.2

f2.1 f2.2

f1.3

f2.3

2
3

1
3

1
3

1
3

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

I Input: set of route for each flow
I Output: one route per flow
I Maximize fairness

I Naive exploration: Enumeration all
combinations (9 combinations)

I Our Exploration with pruning: Ignore
non-minimal bottleneck (4 combinations)

I Our LP-based Heuristic:
I Consider all alternative routes at once

1. Attribute fair rates
2. Remove smallest alternative routes
3. Enumerate the 3 combinations

41/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

EVALUATION OF OUR LP-BASED HEURISTIC

41/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

EVALUATION OF OUR LP-BASED HEURISTIC

42/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

LP-BASED HEURISTIC VS. OPTIMAL EXPLORATION

I Optimal algorithms (100%): naive exploration, exploration with pruning
I Minimal rate as indicator of fairness

43/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

Part I: Semantics Preserving Parallelization

Part II: Real-Time Guarantees

Part III: Evaluation and Conclusion
I Use Cases and Evaluation
I Conclusion

44/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE ROSACE CASE STUDY
I Altitude-only flight controller
I Open source (Simulink, Lustre, Giotto) [Pagetti, Soussié, RTAS’14]

Best effort

Sequential

pure +100 cycles +200 cycles

I +100: each task augmented with 100 cycles
I +200: each task augmented with 200 cycles
I Best effort (ASAP): no real-time guarantees
I Time-Triggered (TT): real-time guarantees

44/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE ROSACE CASE STUDY
I Altitude-only flight controller
I Open source (Simulink, Lustre, Giotto) [Pagetti, Soussié, RTAS’14]

Best effort

Sequential

pure +100 cycles +200 cycles

÷1.8

÷2.1

I +100: each task augmented with 100 cycles
I +200: each task augmented with 200 cycles
I Best effort (ASAP): no real-time guarantees
I Time-Triggered (TT): real-time guarantees

45/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

SYNTHETIC BENCHMARK ON 64 CORES

I 3 phases: Dispatch, Compute, Gather
I 20 Bytes per flow, high network congestion for gather phase

0 2

8 10

4 6

12 14

1 3

9 11

5 7

13 15

Dispatch

Compute

0 2

8 10

4 6

12 14

1 3

9 11

5 7

13 15

Gather

45/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

SYNTHETIC BENCHMARK ON 64 CORES

I 3 phases: Dispatch, Compute, Gather
I 20 Bytes per flow, high network congestion for gather phase

I 54% of WCRT for functional code
I 46% of WCRT for communication and system code

46/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

CONCLUSION

(WCTT)

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

N1.c N2.c N3.c
N4.c N5.c N6.c

functional code

scheduling
Non-preemptive

Mapping +

MIA

Contribution

External tool

NoC Routing
+ Rate Attribution

Executable for
Kalray

WCET Analysis

Code Generation
System + Communication

Network Calculus

N3

N2

N1 N4

N5
N6

pre init

Parallelism Extraction

release dates

Bridge between academic and industry

46/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

CONCLUSION

(WCTT)

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

MIA

Contrib

Externa

NoC Routing
+ Rate Attribution

Executable for
Kalray

WCET Analysis

Network Calculus

N6

init

Parallelism Extraction

release dates

Generation

Code

Preserving

Semantics

Bridge between academic and industry

46/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

CONCLUSION

(WCTT)

N1 N2 N3

N4 N5

N6

Dependency graph
Communication and

Contrib

Externa

NoC Routing
+ Rate Attribution

Network Calculus

N6

init

Parallelism Extraction

release dates

Time-triggered

Execution

Model

Generation

Code

Preserving

Semantics

Bridge between academic and industry

46/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

CONCLUSION

Contrib

Externa

release dates

Time-triggered

Execution

Model

Hard realtime

Guarantees

Many-Core

Performance

Generation

Code

Preserving

Semantics

Bridge between academic and industry

46/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

CONCLUSION

Contrib

Externa

release dates

Time-triggered

Execution

Model

Hard realtime

Guarantees

Many-Core

Performance

Generation

Code

Preserving

Semantics

Bridge between academic and industry

47/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

FUTURE WORK

Generation

Code

Preserving

Semantics

Hard realtime

Guarantees

Many-Core

Performance
Time-triggered

Execution

Model

Thank you for your attention. Questions?

47/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

FUTURE WORK

Release date computation

and memory interferences

analysis with NoC

Generation

Code

Preserving

Semantics

Hard realtime

Guarantees

Many-Core

Performance
Time-triggered

Execution

Model

Thank you for your attention. Questions?

47/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

FUTURE WORK

Release date computation

and memory interferences

analysis with NoC

Memory size problem
(overlays?)

Generation

Code

Preserving

Semantics

Hard realtime

Guarantees

Many-Core

Performance
Time-triggered

Execution

Model

Thank you for your attention. Questions?

47/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

FUTURE WORK

Release date computation

and memory interferences

analysis with NoC

Memory size problem
(overlays?)

Input/Output Management

Generation

Code

Preserving

Semantics

Hard realtime

Guarantees

Many-Core

Performance
Time-triggered

Execution

Model

Thank you for your attention. Questions?

47/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

FUTURE WORK

Release date computation

and memory interferences

analysis with NoC

Memory size problem
(overlays?)

Input/Output Management

What should be the standard

real-time multi-core processor?Generation

Code

Preserving

Semantics

Hard realtime

Guarantees

Many-Core

Performance
Time-triggered

Execution

Model

Thank you for your attention. Questions?

47/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

FUTURE WORK

Release date computation

and memory interferences

analysis with NoC

Memory size problem
(overlays?)

Input/Output Management

What should be the standard

real-time multi-core processor?Generation

Code

Preserving

Semantics

Hard realtime

Guarantees

Many-Core

Performance
Time-triggered

Execution

Model

Thank you for your attention. Questions?

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

Published
Graillat A., Dupont de Dinechin B., DATE 2018
Parallel Code Generation of Synchronous Programs for a Many-core Architecture.

Boyer M., Dupont de Dinechin B., Graillat A., Havet L, ERTS 2018
Computing Routes and Delay Bounds for the Network-on-Chip of the Kalray MPPA2 Processor.

Dupont de Dinechin B., Graillat A., NoCArc 2017
Feed-Forward Routing for the Wormhole Switching Network-on-Chip of the Kalray MPPA2-256
Processor.

Dupont de Dinechin B., Graillat A., AISTECS 2017
Network-on-Chip Service Guarantees on the Kalray MPPA-256 Bostan Processor.

Submitted
Graillat A., Rihani H., Maiza C., Moy M., Raymond P., Dupont de Dinechin B., Real-Time Systems
Journal
Implementation Framework for Real-Time Data-Flow Synchronous Programs on Many-Cores.

Graillat A, Maiza C., Moy M., Raymond P., Dupont de Dinechin B., DATE 2019
Response Time Analysis of Dataflow Applications on a Many-Core Processor with Shared-Memory
and Network-on-Chip.

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

REFERENCES

[1] Bertsekas, D. P., Gallager, R. G., and Humblet, P. (1992). Data networks, vol. 2.
Prentice Hall International, Englewood Cliffs, New Jersey, 7632:493–536.

[2] Chen, S. and Nahrstedt, K. (1998). Maxmin fair routing in connection-oriented
networks. In Proc. Euro-Parallel and Distributed Systems Conf, pages 163–168.

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

Backup

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

DEADLOCK IN WORMHOLE NETWORKS

R1 R2

R3R4

A

B

I This instance of flows deadlocks
I A wormhole packet is “spread” along the

route
I Links 1-4 and 3-2 are shared
I A holds 1-4 but waits for 3-2
I B holds 3-2 but waits for 1-4

I Deadlock-freeness can be ensured at routing time
I Solutions: XY, Hamiltonian Odd-Even, Turn Prohibition, etc

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

MAX MIN FAIR RATE ATTRIBUTION

0 2 3

4 5 6 7

8 9 10 11

13 14 1512

1

cluster

router

f3 f4f1 f2

I Rate limiter configuration to avoid buffer overflow
I Rate of a flow fi noted ρi

I Valid: for each link,∑
i ρi ≤ 1 flit/cycle

I Fair attribution: max-min fairness [2]: “cannot increase
a rate without decreasing an already smaller (or equal)
rate”

Example 1:
f1 = 1

2 , f2 = 1
2 , f3 = 1

4 , f4 = 1
4

→ Valid but not max-min fair (since increasing f3 or f4 can
be done by reducing the greater f2)

Example 2:
f1 = 2

3 , f2 = 1
3 , f3 = 1

3 , f4 = 1
3

→ Valid and max-min fair (increasing f2, f3 or f4 cannot be
done without reducing one of them)

Classical solution: the “Water Filling” algorithm [1]

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

MAX MIN FAIR RATE ATTRIBUTION

0 2 3

4 5 6 7

8 9 10 11

13 14 1512

1

cluster

router

f3 f4f1 f2

I Rate limiter configuration to avoid buffer overflow
I Rate of a flow fi noted ρi

I Valid: for each link,∑
i ρi ≤ 1 flit/cycle

I Fair attribution: max-min fairness [2]: “cannot increase
a rate without decreasing an already smaller (or equal)
rate”

Example 1:
f1 = 1

2 , f2 = 1
2 , f3 = 1

4 , f4 = 1
4

→ Valid but not max-min fair (since increasing f3 or f4 can
be done by reducing the greater f2)

Example 2:
f1 = 2

3 , f2 = 1
3 , f3 = 1

3 , f4 = 1
3

→ Valid and max-min fair (increasing f2, f3 or f4 cannot be
done without reducing one of them)

Classical solution: the “Water Filling” algorithm [1]

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

MAX MIN FAIR RATE ATTRIBUTION

0 2 3

4 5 6 7

8 9 10 11

13 14 1512

1

cluster

router

f3 f4f1 f2

I Rate limiter configuration to avoid buffer overflow
I Rate of a flow fi noted ρi

I Valid: for each link,∑
i ρi ≤ 1 flit/cycle

I Fair attribution: max-min fairness [2]: “cannot increase
a rate without decreasing an already smaller (or equal)
rate”

Example 1:
f1 = 1

2 , f2 = 1
2 , f3 = 1

4 , f4 = 1
4

→ Valid but not max-min fair (since increasing f3 or f4 can
be done by reducing the greater f2)

Example 2:
f1 = 2

3 , f2 = 1
3 , f3 = 1

3 , f4 = 1
3

→ Valid and max-min fair (increasing f2, f3 or f4 cannot be
done without reducing one of them)

Classical solution: the “Water Filling” algorithm [1]

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

MAX MIN FAIR RATE ATTRIBUTION

0 2 3

4 5 6 7

8 9 10 11

13 14 1512

1

cluster

router

f3 f4f1 f2

I Rate limiter configuration to avoid buffer overflow
I Rate of a flow fi noted ρi

I Valid: for each link,∑
i ρi ≤ 1 flit/cycle

I Fair attribution: max-min fairness [2]: “cannot increase
a rate without decreasing an already smaller (or equal)
rate”

Example 1:
f1 = 1

2 , f2 = 1
2 , f3 = 1

4 , f4 = 1
4

→ Valid but not max-min fair (since increasing f3 or f4 can
be done by reducing the greater f2)

Example 2:
f1 = 2

3 , f2 = 1
3 , f3 = 1

3 , f4 = 1
3

→ Valid and max-min fair (increasing f2, f3 or f4 cannot be
done without reducing one of them)

Classical solution: the “Water Filling” algorithm [1]

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

MAX MIN FAIR RATE ATTRIBUTION

0 2 3

4 5 6 7

8 9 10 11

13 14 1512

1

cluster

router

f3 f4f1 f2

I Rate limiter configuration to avoid buffer overflow
I Rate of a flow fi noted ρi

I Valid: for each link,∑
i ρi ≤ 1 flit/cycle

I Fair attribution: max-min fairness [2]: “cannot increase
a rate without decreasing an already smaller (or equal)
rate”

Example 1:
f1 = 1

2 , f2 = 1
2 , f3 = 1

4 , f4 = 1
4

→ Valid but not max-min fair (since increasing f3 or f4 can
be done by reducing the greater f2)

Example 2:
f1 = 2

3 , f2 = 1
3 , f3 = 1

3 , f4 = 1
3

→ Valid and max-min fair (increasing f2, f3 or f4 cannot be
done without reducing one of them)

Classical solution: the “Water Filling” algorithm [1]

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

DETERMINISTIC NETWORK CALCULUS (DNC) PRINCIPLE

0 2 3

4 5 6 7

8 9 10 11

13 14 1512

1

cluster

router

f3 f4f1 f2

R

rr
b

t

γr ,b(t)

R

t

βR,T (t)
T

t

(βR,T ⊗ γr ,b)(t)

backlog

T

delayb

Arrival Curve Service Curve Convolution

I Arrival curve is a maximum traffic entering the network
I Service curve is a minimum traffic handeled by the network
I How to compute service curve?

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

KALRAY MPPA2 NETWORK-ON-CHIP

0 2 3

4 5 6 7

8 9 10 11

13 14 1512

1

cluster

router

f3 f4f1 f2

...

1

f4= 1
3

3
2

f1

f3= 1
3

Round-Robin
FIFO

f1= 2
3

f2= 1
3

f4

11

7f3

f2

Kalray MPPA2 Network Elements

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

SEPARATED FLOW ANALYSIS (1/2)

...

1

f4= 1
3

3
2

f1

f3= 1
3

Round-Robin
FIFO

f1= 2
3

f2= 1
3

f4

11

7f3

f2

Separated Flow Analysis:

I Compute the service curve of each network element
I Compute the successive arrival curves at each network element
I Convolution of the element service curves→ network service curve

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

SEPARATED FLOW ANALYSIS (2/2)

...

1

f4= 1
3

3
2

f1

f3= 1
3

Round-Robin
FIFO

f1= 2
3

f2= 1
3

f4

11

7f3

f2

I Service curve offered to f2?
I At routers 1, 2, 3, 7 and 11.

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

BLIND MULTIPLEXING

f1= 2
3

f2= 1
3

R=1

Peak rate
Output link

- b1 r1

Arrival curve of f1

=

T = b1
R−r1

R-r1

Service Curve for f2

I No information about the arbitration: consider f2 is low priority.
I Can we do better?

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

ROUND ROBIN MULTIPLEXING

f1= 2
3

f2= 1
3

Service Curve for f2

T = (N − 1)lmax

N=2

R = 1
N

I Packets of size lmax

I Restriction: Rate ≤ R
(not applicable to f1)

I Blind multiplexing is the conservative
solution.

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

WORST-CASE TRAVERSAL TIME (WCTT): APPLICATION (1/2)

...

1

f4= 1
3

3
2

f1

f3= 1
3

Round-Robin
FIFO

f1= 2
3

f2= 1
3

f4

11

7f3

f2

I Service curve offered to f2?
I Router 1: Round Robin multiplexing (N=2)
I Router 2: non active (alone)
I Router 3: Round Robin multiplexing

(N=2, f3 and f4 are aggregated with ba =
∑

i 6=2 bi , ra =
∑

i 6=2 ri)
I Router 7 and 11: non active

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

WORST-CASE TRAVERSAL TIME (WCTT): APPLICATION (2/2)

...

1

f4= 1
3

3
2

f1

f3= 1
3

Round-Robin
FIFO

f1= 2
3

f2= 1
3

f4

11

7f3

f2

f1 f2 f3 f4
WCTT (cycles) 25 68 76 76

With packets of lmax=17 flits.

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

EVALUATION OF OUR LP-BASED HEURISTIC

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

EVALUATION OF OUR LP-BASED HEURISTIC

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

LP-BASED HEURISTIC VS. OPTIMAL EXPLORATION

I Optimal algorithms (100%): naive exploration, exploration with pruning
I Minimal rate as indicator of fairness

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

[1] Bertsekas, D. P., Gallager, R. G., and Humblet, P. (1992). Data networks, vol. 2.
Prentice Hall International, Englewood Cliffs, New Jersey, 7632:493–536.

[2] Chen, S. and Nahrstedt, K. (1998). Maxmin fair routing in connection-oriented
networks. In Proc. Euro-Parallel and Distributed Systems Conf, pages 163–168.

	Intro
	Parallelism Extraction
	Mapping/Scheduling
	Code Generation
	Communication
	Interference
	Real-Time NoC
	Evaluation
	Conclusion
	Publications

