Supervisors:

Reviewers:

Examiners:

Parallel Code Generation of Synchronous Programs

Amaury Graillat

Pascal Raymond (Verimag), Matthieu Moy (LIP)
Benoit Dupont de Dinechin (Kalray) \/
erimac

Jan Reineke (Universitat des Saarlandes)

Robert de Simone (INRIA Sophia-Antipolis, Aoste) .:. CALRAY

Anne Bouillard (ENS Paris) Thesis defense, November 16th, 2018

Alain Girault (INRIA Grenoble)
Christine Rochange (IRIT)

1/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

SPACE, WEIGHT, AND POWER

Single-Core Multi-Core Many-Core
Available since 1971 Available since 2001 Available since 2007
Aircraft: since 1980s
for digital fly-by-wire system

End of production More functions in one chip
No longer sufficient More energy efficient

2/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

SPACE, WEIGHT, AND POWER

Single-Core Multi-Core Many-Core

Available since 1971 Available since 2001 Available since 2007

| Aircraft: since 1980s |
Tor digital fly-by-wire system

Well-proven for real-time

End of production More functions in one chip
No longer sufficient More energy efficient

2/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References
: :

SAFETY CRITICAL SYSTEMS

Example of aircraft flight controller (control-command)

: : A
Pilot (stick) ctuator

+» Processor —»

Elevator

Sensors
(altitude)

feedback

» Time-critical: latency constraints are part of the specification (e.g. < some 10ms)
» Designed with eg., Synchronous Languages

3/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References
THE SYNCHRONOUS DATA-FLOW LANGUAGES (1/2)
— Nodel \
/ Node 4
— Node 2
Node6 =
7| Node3 Node 5 /

T

[pre [=—init

» Lustre (academic), Scade (industrial)

» Network of nodes

4/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE SYNCHRONOUS DATA-FLOW LANGUAGES (2/2)

Logical
in—1i1 in :\3 in+1 =7
instant n-1 instant n instant n+1
i —»
{ { t X —» O
\ \ 2>
Op_1=2 op="6 Opt1 = 14

» One execution is called a logical instant

5/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE SYNCHRONOUS DATA-FLOW LANGUAGES (2/2)

Logical
in—1i1 in :\3 in+1 =7
instant n-1 instant n instant n+1
i —»
{ { t X —» O
\ \ 2>
Op_1=2 op="6 Opt1 = 14
» One execution is called a logical instant
Physical
in_1 in fn1
\ instant n-1 \ instant n \ instant n+1
Step J\ Step J\ P ¢
Op—1 On On41

» Requirement: o, before in, 1.

» Worst-Case Execution Time (WCET) 5/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References
: :

LUSTRE/SCADE DELAY OPERATOR

instant 1 instant 2 instant 3

a a=1 \' a=2 a=3
R

c \' d =1 Ja=0 sz\' =1 C=3\' d=4

e e=1 e=3 e=7

» previous operator
» Logical/functional delay

6/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References

References

CODE GENERATION FOR SINGLE-CORE

—» Node 1

™

—»{ Node 2

et

Node 3

Formal semantics

> Determinism

Code Generation

Compilation

Single-core
processor

for each period {

}

i = sensors();
0 = main_step(1)r;
actuators(o);

Static schedule

Static schedule

void main_step(i) {

|~
}

ol = N1_step(i);
02 = N2_step(i);
returns N3 _step(ol, 02);

N1 [N2 | N3 |

\ 2

I
-

]
WCET !

7/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References
:

CODE GENERATION FOR SINGLE-CORE

—» Node 1 .
™~y Formal semantics

Node 3 » Determinism
—»{ Node 2 /

Static schedule

Code Generation void main_step(i) {

0l = N1_step(i);

; 02 = N2_step(i);
f h d _
0ir :agenggit;(());{ .~ returns N3_step(ol, 02);
0 = main_step(i); }
Compilation actuators(o);
}

Static schedule
Single-core
processor

N1 [N2 | N3 |
l WCET I
OK for sequential execution. What about parallel?

\ 2

7/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

THE KALRAY MPPA2

%ﬁ&g:e

Shared Memory

Shared Me\ory

“Cluster (:multi-core)_

Properties of the Kalray MPPA2:

» Cores
No complex branch prediction
Only LRU caches

» Cluster
Banked Shared-Memory (16*128ko)
Independent arbiter for each memory bank.

» Network-on-Chip (NoC) between clusters
Bandwidth limiter (Network calculus possible)
Core

Performance + Predictability

8/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References
: :

OVERVIEW

Lustre/Scade Kalray MPPA2 Bostan

L9

Ly

Automatic code
generation

@ Temporal

Guaranties

Semantics Preservation
Traceability

9/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References
: :

Part I: Semantics Preserving Parallelization

Extraction of Parallelism

Mapping / Scheduling

Code Generation

Communication Channels Implementation

vV Vv .Yy

Part Il: Real-Time Guarantees

Part Ill: Evaluation and Conclusion

10/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

EXTRACTION OF PARALLELISM

() Contribution
() External tool

Method 1:
» In the top-level node:
» 1 node = 1 task (runnable).

» Generation of sequential code for each
node

» Similar to Architecture Description
Language (Prelude, Giotto)

Method 2: based on fork-join:
» see manuscript

functional code

N1.c N2.c N3.c
N4.c N5.c N6.c

11/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

EXTRACTION OF PARALLELISM

() Contribution
() External tool

Method 1

Communication and » In the top-level node:

Dependency graph

N1.c N2.cN3.c _

@ \1}’\1}5 » 1 node = 1 task (runnable).
I\& N5

A » Generation of sequential code for each
N node

» Similar to Architecture Description

functional code

Mapping +
Non-preemptive
scheduling

Language (Prelude, Giotto)
Method 2: based on fork-join:
» see manuscript

Code Generation
ystem + Communication

Executable for
Kalray

11/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication

Interference Real-Time NoC Evaluation Conclusion Publications References References

MAPPING / SCHEDULING

() Contribution
() External tool

Parallelism Extraction

Communication and
Dependency graph

AT
I\% N5

N
7
I

functional code

N1.c N2.cN3.c
N4.c N5.c Né.c

Mapping +
Non-preemptive
scheduling

-

Code Generation
ystem + Communication

Executable for
Kalray

|
J

» Need non-preemptive static schedule
» External scheduling tool
» We can easily check the schedule

12/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
:

MAPPING/SCHEDULING: EXAMPLE

— Node1l

Node 4

.
B

— Node 3 Node 5

Node 6 =

» Core 0: N1 ;N4 ; N6
Core 1: N2 ; N5
Core 2: N3

» Schedule checked using the dependency graph
13/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~Conclusion Publications References References

CODE GENERATION

() Contribution
() External tool

Parallelism Extraction

functional code Communication and
N1.c N2.c N3.c Dependency graph
N4.c N5.c N6.c l\&} }2\ I\}%

I\% N5

N

reemp T
sc edulmg

NoC Routing

Code Generation
ystem + Commumcahon

14/48

Intro Parallelism Extraction ~Mapping/Scheduling

Code Generation ~ Communication

Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References

References

CODE GENERATION

() Contribution
() External tool

functional code

N1.c N2.cN3.c
N4.c N5.c Né.c

reemp' 3
scl eduhng

Code Generation
ystem + Commumcahon

Parallelism Extraction

Communication and
Dependency graph

e

NoC Routing

» Dependencies compiled into “wait for
input”.

Sketch of code for core 0.

for each period{
wait_inputs_N1(); // N1
N1_step();
write_ outputs_N1();

wait_inputs_N4(); // N4
N4_step();
write_outputs_N4();

wait_inputs_N6(); // N6
N6_step();
write_outputs_N6 () ;

14/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

COMMUNICATION CHANNELS

() Contribution
() External tool

functional code

N1.c N2.cN3.c
N4.c N5.c Né.c

Mapping +
Non-preemptive
scheduling

Communication and
Dependency graph

» Two kinds of communications:
- instantaneous (—)
- delayed (—)

NoC Routing

Code Generation
ystem + Communication

Executable for
Kalray

15/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

INSTANTANEOUS COMMUNICATION

void write_outputs_N2() {

() Contribution copy (N4.in2, N2.out);

() External tool

Communication and

N1.c N2.c N3.c Dependency graph

Ni.cN5.cNoc 1\&} }2\ 1\/73 void wait_for_ inputs_N4() {
I\KI\ N5

N

functional code

Mapping +
Non-preemptive
scheduling

NoC Routing

Code Generation
ystem + Communication

Executable for
Kalray =

» Efficient hardware synchronization
» Software-based cache coherency 16/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication

Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References

References

INSTANTANEOUS COMMUNICATION

() Contribution
() External tool

Parallelism Extraction

functional code Communication and

Mapping +
Non-preemptive
scheduling

Code Generation
ystem + Communication

Executable for
Kalray =

N1.c N2.c N3.c Dependency graph
N4.c N5.c N6.c]\&} }2\1\/73
Ne N5

N

void write_outputs_N2() {
copy (N4.in2, N2.out);
channel N2 N4 = true;
// + cache management
notify (core N4);
copy (N5.inl, N2.out);

void wait_for_ inputs_N4 () {

while (! channel N2 N4) {
wait ();

}

channel N2 N4 = false;

while (! channel N1_N4) {
wait () ;

}

channel N1 N4 = false;

// + cache management

Efficient hardware synchronization
» Software-based cache coherency

16/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

COMMUNICATION CHANNELS

() Contribution
() External tool

functional code

N1.c N2.cN3.c
N4.c N5.c Né.c

Mapping +
Non-preemptive
scheduling

Communication and
Dependency graph

» Two kinds of communications:
- instantaneous (—)
- delayed (—)

NoC Routing

Code Generation
ystem + Communication

Executable for
Kalray

17/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

DELAYED COMMUNICATION

i1 o1

i b02

=

Transformation into a sWwaP + scheduling constraints.

n-1

Scenario 1

instant n n+1

Constraint: B—S

Scenario 2

n-1 instant n n+1

Constraint: A—S

18/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

DELAYED COMMUNICATION

Ee=—INit =

2 {5 o2

Transformation into a sWwaP + scheduling constraints.

Scenario 1 Scenario 2

n-1 instant n n+1 n-1 instant n n+1

Constraint: B—S Constraint: A—S

18/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

DELAYED COMMUNICATION

i1 o1

i b02

Transformation into a sWwaP + scheduling constraints.

n-1

Scenario 1

instant n n+1

Constraint: B—S

Scenario 2

n-1 instant n n+1

Constraint: A—S

18/48

Intro

Parallelism Extraction Mapping/Scheduling Code Generation ~Communication

Interference

Real-Time NoC Evaluation Conclusion Publications References

References

CONCLUSION OF PART |

() Contribution
() External tool

Parallelism Extraction

Communication and
Dependency graph

AT
I\% N5

N

functional code

N1.c N2.cN3.c
N4.c N5.c Né.c

Mapping +
Non-preemptive
scheduling

NoC Routing

Code Generation
ystem + Communication

Executable for
Kalray

» Semantics preserved
» Next step: Temporal Guaranties

19/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

Part I: Semantics Preserving Parallelization

Part Il: Real-Time Guarantees

» Shared Memory Interference
» Time-Triggered Execution Model
» Real-Time Guarantees with Network-on-Chip

Part Ill: Evaluation and Conclusion

20/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

INTERFERENCE AND REACTION TIME

Core 0 WQET
Task A ;
Core 0 Task A
" ore E—
Core 1
E
M
Core 1
Core 15

» Single-core: WCET is sufficient

21/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion

Publications References

References

INTERFERENCE AND REACTION TIME

Core 0

Task A

Core 1

Task B

Core 15

m

Core 0

Core 1

» Single-core: WCET is sufficient

» Multi-core: WCET+interference on shared resources
= Worst-Case Response Time (WCRT).

» WCET+interference too pessimistic in the general case
= exploit the execution model in the analysis

Task A

W%T WQRT
7 ! !

Access

Z

Request

Task B

'//

Request

Access

21/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

BANKED MEMORY

Bank 0

Core 0

Bank 1

Core 1

Robin

» Private arbiter for each bank
» Available in the Kalray MPPA2 (silicon)

22/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

BANKED MEMORY IN KALRAY MPPA2

— Node 1 \
1

Node 4

— Node 2
Node 6 —

— Node3 ——= Node5

Bank 0 for core 0

Core 0 N1 N4 N6

Bank 1 for Core 1

Core 1 N2 N5

Round
Robin

» Choice: Code, input buffer, local variables are mapped in core’s bank of the core
» Interference on communication only

23/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

BANKED MEMORY IN KALRAY MPPA2

— Node 1 \
1

Node 4

— Node 2
Node 6 —

— Node3 ——= Node5

Bank 0 for core 0

Core 0 N1 N4 N6

Bank 1 for Core 1

Core 1 N2 N5

Round
Robin

» Choice: Code, input buffer, local variables are mapped in core’s bank of the core
» Interference on communication only

23/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

BANKED MEMORY IN KALRAY MPPA2

— Node 1 \
1

Node 4

— Node 2
Node 6 —

— Node3 ——= Node5

Bank 0 for core 0

Core 0 N1 N4 N6

Communication
Bank 1 for Core 1

Core 1 N2 N5

Round
Robin

» Choice: Code, input buffer, local variables are mapped in core’s bank of the core
» Interference on communication only

23/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

BANKED MEMORY IN KALRAY MPPA2

— Node 1 \
1

Node 4

— Node 2
Node 6 —

— Node3 ——= Node5

Bank 0 for core 0

Core 0 N1 N4 N6

Communication
Bank 1 for Core 1

Core 1 N2 N5

Round
Robin

» Choice: Code, input buffer, local variables are mapped in core’s bank of the core
» Interference on communication only

How to activate tasks? 23/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

PROBLEM WITH ASAP EXECUTION

______WCETA_ __ __WCETB___
Core 0 Task A Task B
___WCETC ___,_ __WCETD_ __
Core 1 Task C Task D
Deadlinei

24/48

Intro Parallelism Extraction

Mapping/Scheduling Code Generation

Communication

Interference

Real-Time NoC Evaluation

Conclusion

Publications

References

References

PROBLEM WITH ASAP EXECUTION

Core 0

Core 1

Core 0

Core 1

______WCETA_ __ __WCETB___
Task A Task B
___WCETC ___,_ __WCETD_ __
Task C Task D
Deadline
WCET B
,,,,, WCETA ____
Task A Task B
___WCETC __, | ___ WCETD ___
Task C Task D
Deadline

Faster execution of A = interference
between B and C.

Timing Anomaly

24/48

Intro Parallelism Extraction

Mapping/Scheduling Code Generation

Communication

Interference Real-Time NoC ~ Evaluation Conclusion Publications References

References

PROBLEM WITH ASAP EXECUTION

Core 0

Core 1

Core 0

Core 1

______WCETA_ __ __WCETB___
Task A Task B
___WCETC ___,_ __WCETD_ __
Task C Task D
Deadline
WCET B
,,,,, WCETA ____
Task A Task B
___WCETC __, | ___ WCETD ___
Task C Task D
Deadline

Faster execution of A = interference
between B and C.
Timing Anomaly

Solution: release dates for tasks
(time-triggered)

24/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
:

TIME-TRIGGERED EXECUTION MODEL
Principle
Release =0 Release = 427

Core 0 Task A Task B

Core 1 Task C Task D

Release =0 Release = 398

» Compute a static release date when data is guaranteed to be available
» Time-Triggered execution prevents tasks from starting earlier

Implementation
void wait_inputs_N1() {
while(time () < t_period + release_date_N1) {

// wait
}

25/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

MULTI-CORE INTERFERENCE ANALYSIS

WCET —=
Dependencies —=
Memory access —=
Mapping —=

MIA

I— Release dates of tasks

—= WCRT

Multi-Core Interference Analysis (MIA) Tool [Hamza Rihani, RTNS 2016]

www-verimag.imag.fr/Multi-core-interference-Analysis.html

26/48

www-verimag.imag.fr/Multi-core-interference-Analysis.html

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

MULTI-CORE INTERFERENCE ANALYSIS

Dependencies

emory access —=|
Mapping —=

MIA

9(Release dates of task%

—= WCRT

Multi-Core Interference Analysis (MIA) Tool [Hamza Rihani, RTNS 2016]

www-verimag.imag.fr/Multi-core-interference-Analysis.html

26/48

www-verimag.imag.fr/Multi-core-interference-Analysis.html

Intro

Parallelism Extraction

Mapping/Scheduling

Code Generation

Communication

Interference Real-Time NoC ~ Evaluation Conclusion Publications

References

References

FRAMEWORK

D Contribution
@ External tool

functional code

N1.c N2.c N3.c
N4.c N5.c Né.c

release dates

Non-preemptive

Code Generation
System + Communication

WCET Analysis

Mapping +

scheduling

Executable for

Communication and
Dependency graph

NoC Routing
+ Rate Attribution

Network Calculus
(WCTT)

» WCET Analysis (Otawa, AiT)

» Computation of the release dates (MIA

tool)
» Insertion in the executable.

[Submitted: Graillat A., Rihani H., Maiza C.,
Moy M., Raymond P., Dupont de Dinechin B.,

Real-Time Systems Journal]

27/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

QOUR EXECUTION MODEL

Static scheduling

Bare metal, no interrupt, no preemption
Banked memory mapping (1 core — 1 bank)
Time-triggered

v vVv.vYy

Deterministic and WCRT guarantee

28/48

Intro

Parallelism Extraction

Mapping/Scheduling

Code Generation Comm

unication Interference

Real-Time NoC Evaluation

Conclusion

Publications

References

References

OVERVIEW

C) Contribution
() External tool

functional code

N1.cN2.cN3.c
N4.c N5.c N6.c

release dates

Non-preemptive

Code Generation
System + Communication

WCET Analysis

Mapping +

scheduling

Communication and
Dependency graph

NoC Routing
+ Rate Attribution|

Executable for
Kalray >

Network Calculus
(WCTT)

29/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~ Communication

Interference Real-Time NoC Evaluation Conclusion Publications References References

THE KALRAY MPPA2’s NoC

North

East

East

North

Rate limiter

TX buffer

MEM

Cluster A

Router

Local

o

MEM

Cluster B

30/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation =~ Communication

Interference Real-Time NoC Evaluation ~Conclusion Publications References References

THE KALRAY MPPA2’s NoC

North

East

East

North

|East, North, East, Local

ow 1

Rate limiter

l

Core 0 MEM

Cluster A

Router

Local

;

head DMA

Core

0 RXbuffer

MEM

Cluster B

30/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation =~ Communication

Interference Real-Time NoC Evaluation ~ Concl

usion Publications References References

THE KALRAY MPPA2’s NoC

North

East

East

flow 2

North Full Duplex Links

|East, North, East, Local

ow 1

Rate limiter

l

Core 0 MEM

Cluster A

Router

Local

;

head DMA

Core

0 RXbuffer

MEM

Cluster B

30/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation =~ Communication

Interference Real-Time NoC Evaluation ~ Concl

usion Publications References References

THE KALRAY MPPA2’s NoC

flow 2

rate = %B

East

North =
te= 1B

North =g
East
|East, North, East, Local Router
ow 1

Rate limiter

l

Core 0 MEM

Cluster A

Local

;

head DMA

Core

0 RXbuffer

MEM

Cluster B

30/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

1. Routing
Route = sequence of directions computed by
sender

O cluster
() router

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

31/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

1. Routing
Route = sequence of directions computed by
sender

O cluster
() router

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

31/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
:

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

1. Routing
Route = sequence of directions computed by
sender
Deadlock-free algorithms (XY, Hamiltonian)

O cluster
() router

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

31/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

f1 A1 2 1. Routing
i Route = sequence of directions computed by

f1.2 531 2) sender
T Deadlock-free algorithms (XY, Hamiltonian)
EK< - EB’* Algorithm with path diversity (Hamiltonian Odd

Even (HOE))

O cluster

() router

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

31/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

f1 A1 2 1. Routing
i Route = sequence of directions computed by

f1.2 81 2) sender
T Deadlock-free algorithms (XY, Hamiltonian)
EK< - EB’* Algorithm with path diversity (Hamiltonian Odd

— \ 2 Even (HOE))
[2.1 2.2 > R .
| . Route Selection
a Choose one static route per flow
O . .
Optimize performance and fairness
O cluster
() router

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

31/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
:

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

1. Routing
Route = sequence of directions computed by
sender
Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

2. Route Selection
Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1, 2.2},

O cluster
() router

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

31/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
:

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

1. Routing
Route = sequence of directions computed by
sender
Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

2. Route Selection
Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1,12.2}, {f1.2, f2.2}...

O cluster
() router

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

31/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

O cluster
() router

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

1. Routing

Route = sequence of directions computed by
sender

Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

. Route Selection

Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1,12.2}, {f1.2, f2.2}...

. Rate attribution

Fair attribution
e.g. {0.5, 0.5},

31/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

O cluster
() router

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

1. Routing

Route = sequence of directions computed by
sender

Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

. Route Selection

Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1,12.2}, {f1.2, f2.2}...

. Rate attribution

Fair attribution
e.g. {0.5, 0.5}, {1.0, 1.0}...

31/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

REAL-TIME GUARANTEES WITH NETWORK-ON-CHIP

O cluster

() router

[Dupont de Dinechin B., Graillat A.,
NoCArc 2017]

. Routing

Route = sequence of directions computed by
sender

Deadlock-free algorithms (XY, Hamiltonian)
Algorithm with path diversity (Hamiltonian Odd
Even (HOE))

. Route Selection

Choose one static route per flow
Optimize performance and fairness
e.g. {f1.1,12.2}, {f1.2, f2.2}...

. Rate attribution

Fair attribution
e.g. {0.5, 0.5}, {1.0, 1.0}...

. Network Calculus

Compute latency and buffer level

31/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

1. UNICAST ROUTING

Hamiltonian Routing

Up-Network Down-Network

» Deadlock-free
» Path-Diversity

32/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

1. MULTICAST ROUTING PROBLEM

» Deadlock-free heuristic to “travelling salesman
problem”:

» One route? Tree is no possible with Kalray
architecture

» Hamiltonian: minimum of two routes

Source

@
. Destination

33/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

1. MULTICAST ROUTING PROBLEM

» Deadlock-free heuristic to “travelling salesman
problem”:

» One route? Tree is no possible with Kalray
architecture

» Hamiltonian: minimum of two routes

Source

Destination

33/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References
: :

1. MULTICAST ROUTING: HAMILTONIAN

» Dual-Path + Hamiltonian without path diversity
(Lin et al., 1992)

» Small path diversity, we can do better.

34/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

1. MULTICAST RouTING: HOE

Even

Odd

Allowed
with HOE

Even

Hamiltonian Odd Even (Bahrebar et al.)
routing: allows some non-Hamiltonian
paths

Our choice: Dual-Path + HOE

35/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

EVALUATION OF DEADLOCK-FREE MULTICAST ROUTING
Minimum rate vs. Network load

(Higher is bettery — =m===e= Dual Path+Hamiltonian

1 = Dual Path+HOE

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2

0.1

0 Network
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5 T.oad

36/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

EVALUATION OF DEADLOCK-FREE MULTICAST ROUTING

Minimum rate vs. Network load

(Higher is bettery — ===== Dual Path+Hamiltonian
Dual Path+HOE

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2 s

- -
-
~aos
-
-

0 Network
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Load

|
01 Realistic network load

» Minimal rate increased of up to 19% with Dual Path HOE compared to Dual Path
Hamiltonian. 36/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

2. ROUTE SELECTION

2
= f1.1

v

Input: set of route for each flow

f1.2 » Output: one route per flow
Ek< f1.3|% » Maximize fairness
T f2.1 (1{2-2 f2.3 » Naive exploration: Enumeration all
%‘? 0 combinations, run step 3 on each solution, keep
——t the best.

O cluster 2.1 2.2 2.3

fi1 05,05 | 05,05]| 05,05
fl2] 05,05 | 1.0,1.0 | 1.0,1.0
f13]1.0,1.0 | 05,05 | 1.0,1.0

(O router

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018] Enumeration of 9 combinations of possible routes

37/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation

Communication Interference Real-Time NoC Evaluation Conclusion Publications ~ References References

2. ROUTE SELECTION

2.3

O cluster

() router

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

» Input: set of route for each flow

» Output: one route per flow

» Maximize fairness

» Naive exploration: Enumeration all
combinations (9 combinations)

» Exploration with pruning: Ignore combinations
with non-minimal bottleneck

38/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation

Communication Interference Real-Time NoC Evaluation Conclusion Publications ~ References References

2. ROUTE SELECTION

2.3

O cluster

() router

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

» Input: set of route for each flow
» Output: one route per flow
» Maximize fairness

» Naive exploration: Enumeration all
combinations (9 combinations)

» Exploration with pruning: Ignore combinations
with non-minimal bottleneck

» Apply rate attribution (step 3)

Enumeration of 4 combinations

38/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

Exploration vs. Our Exploration with Pruning

Combinations
1.00E+014
1.00E+012
1.00E+010
1.00E+008
1.00E+006
1.00E+004
7 7 Z 7 7
o ii% Z Z 7 = ?
41} [a1] o 1N} [a1] o 1N} m o w m o w [a1] o w [a1] o
O O O OF OO F 0O F 0 o F 0 o F
T ® 0 %aI @ FI 08I0 6 I 0
G O Oy op O 4 o« Wy W0 =
@ o @ o wou wou Use cases
%

% Pruned combinations
Remaining combinations 39/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

Exploration vs. Our Exploration with Pruning

gmbinations
1.00E+014

1.00E+012
1.00E+010
1.00E+008
1.00E+006
1.00E+004
7 7 Z 7 L
o ii% - ?
1 0OE+000 [e LA [[
L a1} o w [a1] o w [a1] o w oM o w m o (11} [an] o
O OF O OF 0O F OO0 F O OF 0O 0 F
I Q0% g QIO YT a0 R
O O @y x o &4 = W & Wop o0 E e
@ o @ o wou wou Use cases
7

% Pruned combinations
Remaining combinations 39/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

2. ROUTE SELECTION

2
= f1.1

1.3

e N
%‘szllj sz.z % 2.3

O cluster
(O router

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

Input: set of route for each flow
Output: one route per flow
Maximize fairness

Naive exploration: Enumeration all
combinations (9 combinations)

Our Exploration with pruning: Ignore
non-minimal bottleneck (4 combinations)
Our LP-based Heuristic:

» Consider all alternative routes at once
1. Attribute fair rates

40/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

2. ROUTE SELECTION

» Input: set of route for each flow
7 » Output: one route per flow
» Maximize fairness

» Naive exploration: Enumeration all
combinations (9 combinations)

» Our Exploration with pruning: Ignore

O cluster non-minimal bottleneck (4 combinations)

» Our LP-based Heuristic:

» Consider all alternative routes at once
1. Attribute fair rates

(O router

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

40/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

2. ROUTE SELECTION

» Input: set of route for each flow
7 » Output: one route per flow
» Maximize fairness

» Naive exploration: Enumeration all
combinations (9 combinations)

» Our Exploration with pruning: Ignore
O cluster non-minimal bottleneck (4 combinations)
» Our LP-based Heuristic:
» Consider all alternative routes at once
1. Attribute fair rates
[Boyer M., Dupont de Dinechin B., 2. Remove smallest alternative routes
Graillat A., Havet L, ERTS 2018]

(O router

40/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

2. ROUTE SELECTION

2
= f1.1

1.2 b)) R
T3 3 3
2 1.3
Ek& |
sz.l sz.z 2.3
N x=
O cluster
(O router

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

Input: set of route for each flow
Output: one route per flow
Maximize fairness

Naive exploration: Enumeration all
combinations (9 combinations)

Our Exploration with pruning: Ignore
non-minimal bottleneck (4 combinations)
Our LP-based Heuristic:

» Consider all alternative routes at once

1. Attribute fair rates
2. Remove smallest alternative routes

40/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

2. ROUTE SELECTION

2
= f1.1

1.2 b)) R
T3 3 3
2 1.3
Ek& |
sz.l sz.z 2.3
N x=
O cluster
(O router

[Boyer M., Dupont de Dinechin B.,
Graillat A., Havet L, ERTS 2018]

Input: set of route for each flow
Output: one route per flow
Maximize fairness

Naive exploration: Enumeration all
combinations (9 combinations)

Our Exploration with pruning: Ignore
non-minimal bottleneck (4 combinations)
Our LP-based Heuristic:

» Consider all alternative routes at once

1. Attribute fair rates
2. Remove smallest alternative routes
3. Enumerate the 3 combinations

40/48

Intro Parallelism Extraction

Mapping/Scheduling

Code Generation

Communication

Interference

Real-Time NoC Evaluation

Conclusion

Publications

References

References

EVALUATION OF OUR LP-BASED HEURISTIC

Combinations

2

2

1

1

5

0

5

o

BC-HOE

BC-SCB

BC-TP

BR-HOE
BR-SCB
BR-TP

E1-HOE

E1-SCB

E1-TP

E2-HOE

E2-SCB

E2-TP

S-HOE

S-SCB

S-TP

T-HOE

T-SCB

T-TP

41/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

EVALUATION OF OUR LP-BASED HEURISTIC

binations

20

=
o

)]

BC-HOE
BC-SCB
BC-TP
BR-HOE
BR-SCB
BR-TP
E1-HOE
E1-SCB
EL-TP
E2-HOE
E2-SCB
E2-TP
S-HOE
s-scB
S-TP
T-HOE
T-SCB
T-TP

41/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications

References References

LP-BASED HEURISTIC VS. OPTIMAL EXPLORATION

» Optimal algorithms (100%): naive exploration, exploration with pruning
» Minimal rate as indicator of fairness

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00% -
30.00%
20.00%
10.00% -

0.00%

w
o
I
o]
@

E1-SCB

E2-SCB

W Rate_min

42/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

Part |I: Semantics Preserving Parallelization

Part Il: Real-Time Guarantees

Part Ill: Evaluation and Conclusion
» Use Cases and Evaluation
» Conclusion

43/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~Conclusion Publications References References
: :

THE ROSACE CASE STUDY

» Altitude-only flight controller
» Open source (Simulink, Lustre, Giotto) [Pagetti, Soussié, RTAS’14]

s 50 —
40
O Sequential
%0 O Best effort
20 BT
10
o =il

pure +100 cycles +200 cycles

+100: each task augmented with 100 cycles
+200: each task augmented with 200 cycles
Best effort (ASAP): no real-time guarantees
Time-Triggered (TT): real-time guarantees

vVvyVvyy

44/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~Conclusion Publications References References
: :

THE ROSACE CASE STUDY

» Altitude-only flight controller
» Open source (Simulink, Lustre, Giotto) [Pagetti, Soussié, RTAS’14]

+2.1

s 50
40

+1.8 @ Sequential
30

O Best effort

20 BT
10
o =l
pure +100 cycles +200 cycles

+100: each task augmented with 100 cycles
+200: each task augmented with 200 cycles
Best effort (ASAP): no real-time guarantees
Time-Triggered (TT): real-time guarantees

vVvyVvyy

44/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~Conclusion Publications References References
: :

SYNTHETIC BENCHMARK ON 64 CORES

» 3 phases: Dispatch, Compute, Gather
» 20 Bytes per flow, high network congestion for gather phase

O BmOoN ®

3

Compute

®» ©

Dispatch

45/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References
: :

SYNTHETIC BENCHMARK ON 64 CORES

» 3 phases: Dispatch, Compute, Gather
» 20 Bytes per flow, high network congestion for gather phase

s
450

400
350
300
250
200
150
100

50

Sequential T Best effort

» 54% of WCRT for functional code
» 46% of WCRT for communication and system code 45/48

Intro Parallelism Extraction

Mapping/Scheduling

Code Generation

Communication

Interference

Real-Time NoC Evaluation

Conclusion

Publications

References

References

CONCLUSION

() Contribution
() External tool

functional code

N1.cN2.cN3.c
N4.c N5.c N

release dates

Mapping +
Non-preemptive
scheduling

Code Generation
System + Communication

Executable for

WCET Analysis

Kalray =

Parallelism Extraction|

Communication and
Dependency graph

AT

NoC Routing

+ Rate Attribution|

Network Calculus
(WCTT)

46/48

Intro Parallelism Extraction ~ Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluati Ci ion Publicati References References

CONCLUSION

Communication and
Dependency graph

AT
e

Executable for
Kalray [

WCET Analysis

release dates

46/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC E! i Ci i Publicati References References

CONCLUSION

Communication and
Dependency graph

NAY
8

release dates

46/48

Evaluation Conclusion P

Intro F ism E: i [\ i ling Code i C icati Interference Real-Time NoC

CONCLUSION

D Contril
C) Extern:

release dates

46/48

Intro F ism E: i N i ling Code i C icati Interference Real-Time NoC Evaluati [of i Publicati F References

CONCLUSION

D Contril
C) Extern:

Bridge between academic and industry

release dates

46/48

Intro F ism E: i Mappi ling Code i C icati Interference Real-Time NoC Evaluati [of

FUTURE WORK

47/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation =~ Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

FUTURE WORK

Hard realtime

Guarantees

Many-Core

Performance

Release date computation
and memory interferences

analysis with NoC

47/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

FUTURE WORK

Hard realtime
Memory size problem

(overlays?) Guarantees

Many-Core

Performance
Release date computation

and memory interferences

analysis with NoC

47/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

FUTURE WORK

Input/Output Management

Hard realtime
Memory size problem

(overlays?) Guarantees

Many-Core

Performance
Release date computation

and memory interferences

analysis with NoC

47/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

FUTURE WORK

Input/Output Management

Hard realtime
Memory size problem

What should be the standard
(overlays?)

Guarantees

real-time multi-core processor?
Many-Core

Performance
Release date computation

and memory interferences

analysis with NoC

47/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC

Evaluation Conclusion Publications References References

FUTURE WORK

Input/Output Management —=—

Memory size problem
(overlays?)

Semantics

Preserving

Code

Generation

Release date computation
and memory interferences —s——

analysis with NoC

Time-triggered

Execution

Model

Hard realtime

Guarantees

Many-Core

Performance

What should be the standard

real-time multi-core processor?

Thank you for your attention. Questions?

47/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~Conclusion Publications References References

Published
Graillat A., Dupont de Dinechin B., DATE 2018
Parallel Code Generation of Synchronous Programs for a Many-core Architecture.

Boyer M., Dupont de Dinechin B., Graillat A., Havet L, ERTS 2018
Computing Routes and Delay Bounds for the Network-on-Chip of the Kalray MPPA2 Processor.

Dupont de Dinechin B., Graillat A., NoCArc 2017
Feed-Forward Routing for the Wormhole Switching Network-on-Chip of the Kalray MPPA2-256
Processor.

Dupont de Dinechin B., Graillat A., AISTECS 2017
Network-on-Chip Service Guarantees on the Kalray MPPA-256 Bostan Processor.

Submitted

Graillat A., Rihani H., Maiza C., Moy M., Raymond P., Dupont de Dinechin B., Real-Time Systems
Journal

Implementation Framework for Real-Time Data-Flow Synchronous Programs on Many-Cores.

Graillat A, Maiza C., Moy M., Raymond P., Dupont de Dinechin B., DATE 2019
Response Time Analysis of Dataflow Applications on a Many-Core Processor with Shared-Memory
and Network-on-Chip.

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

REFERENCES

[1] Bertsekas, D. P, Gallager, R. G., and Humblet, P. (1992). Data networks, vol. 2.
Prentice Hall International, Englewood Cliffs, New Jersey, 7632:493-536.

[2] Chen, S. and Nahrstedt, K. (1998). Maxmin fair routing in connection-oriented
networks. In Proc. Euro-Parallel and Distributed Systems Conf, pages 163—168.

48/48

Intro Par: References Ref

Backup

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

DEADLOCK IN WORMHOLE NETWORKS

This instance of flows deadlocks

A wormhole packet is “spread” along the
route

Links 1-4 and 3-2 are shared
A holds 1-4 but waits for 3-2
B holds 3-2 but waits for 1-4

v

v

v

v

v

» Deadlock-freeness can be ensured at routing time
» Solutions: XY, Hamiltonian Odd-Even, Turn Prohibition, etc

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
:

MAX MIN FAIR RATE ATTRIBUTION
» Rate limiter configuration to avoid buffer overflow
» Rate of a flow f; noted p;

» Valid: for each link,
> pi < 1flit/cycle

» Fair attribution: max-min fairness [2]: “cannot increase
a rate without decreasing an already smaller (or equal)
rate”

O cluster

(O router

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
:

MAX MIN FAIR RATE ATTRIBUTION
» Rate limiter configuration to avoid buffer overflow
» Rate of a flow f; noted p;

» Valid: for each link,
> pi < 1flit/cycle

» Fair attribution: max-min fairness [2]: “cannot increase
a rate without decreasing an already smaller (or equal)
rate”

Example 1:
f1=%f2=1,18=1 =1

O cluster

(O router

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
:

MAX MIN FAIR RATE ATTRIBUTION
» Rate limiter configuration to avoid buffer overflow
» Rate of a flow f; noted p;

» Valid: for each link,
> pi < 1flit/cycle

» Fair attribution: max-min fairness [2]: “cannot increase
a rate without decreasing an already smaller (or equal)
rate”

Example 1:

f1 =%,f2=%,f3=},f4=%

— Valid but not max-min fair (since increasing f3 or f4 can
be done by reducing the greater 2)

O cluster
(O router

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

MAX MIN FAIR RATE ATTRIBUTION
» Rate limiter configuration to avoid buffer overflow
» Rate of a flow f; noted p;

» Valid: for each link,
> pi < 1flit/cycle

» Fair attribution: max-min fairness [2]: “cannot increase
a rate without decreasing an already smaller (or equal)
rate”

Example 1:

f1 =%,f2=%,f3=},f4=%

— Valid but not max-min fair (since increasing f3 or f4 can
be done by reducing the greater 2)

O cluster Example 2:
2 1 1 1
O router f1 =§,f2=§,f3=§,f4=*

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
:

MAX MIN FAIR RATE ATTRIBUTION
» Rate limiter configuration to avoid buffer overflow
» Rate of a flow f; noted p;

» Valid: for each link,
> pi < 1flit/cycle

» Fair attribution: max-min fairness [2]: “cannot increase
a rate without decreasing an already smaller (or equal)
rate”

Example 1:

f1 =%,f2=%,f3=},f4=%

— Valid but not max-min fair (since increasing f3 or f4 can
be done by reducing the greater 2)

O cluster Example 2:

2 1 1 1
O router f1=§,f2=§,f3=§,f4=§
— Valid and max-min fair (increasing f2, f3 or f4 cannot be
done without reducing one of them)

Classical solution: the “Water Filling” algorithm [1] 48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

DETERMINISTIC NETWORK CALCULUS (DNC) PRINCIPLE

f1 2 3 f4
T R
b
t t
T T
¥r,p(t) Br.7() (Br,T ®r,p)(1)
Arrival Curve Service Curve Convolution

O cluster

() router

» Arrival curve is a maximum traffic entering the network
» Service curve is a minimum traffic handeled by the network
» How to compute service curve?

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
:

KALRAY MPPA2 NETWORK-ON-CHIP

1
3
4=

w|

f2=3

f?)%
fl=2 =N =03
1 2
m 3 7
fl g 11
[1FIFO
f4

© cluster (O Round-Robin
() router
Kalray MPPA2 Network Elements

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

SEPARATED FLOW ANALYSIS (1/2)

f3=1
_1 _1
f2=} fi=1
2
f1=5 =1 O=0)3
1 2
m 3 7
fl g 1
[1 FIFO
O Round-Robin (1

Separated Flow Analysis:

» Compute the service curve of each network element
» Compute the successive arrival curves at each network element
» Convolution of the element service curves — network service curve

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

SEPARATED FLOW ANALYSIS (2/2)

=5 =1 =03
1 2
m 3 7
flp 1
[1 FIFO
O Round-Robin

» Service curve offered to f2?
» Atrouters1,2,3,7 and 11.

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

BLIND MULTIPLEXING

5
-
w|—=

O=-1

L]
fl=f —=AO008~
R=1 - rl =
i bl ’/ /414
Output link Arrival curve of f1 T= %

Peak rate Service Curve for f2

» No information about the arbitration: consider 2 is low priority.
» Can we do better?

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
:

ROUND ROBIN MULTIPLEXING

1
3

f

N

[=-]

f1=2 =008

» Packets of size /M

» Restriction: Rate < R
(not applicable to f1)

» Blind multiplexing is the conservative
N=2 solution.

/max

Service Curve for 2

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References

WORST-CASE TRAVERSAL TIME (WCTT): APPLICATION (1/2)

v V. v Yy

1
2
f1=5 =1 O=0)3
1 2
m 3 7
fl g 1
[] FIFO
O Round-Robin (1

Service curve offered to f2?
Router 1: Round Robin multiplexing (N=2)
Router 2: non active (alone)

Router 3: Round Robin multiplexing
(N=2, f3 and f4 are aggregated with by = >, o bjs ra= 3,45 1)

» Router 7 and 11: non active

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation Communication Interference Real-Time NoC ~ Evaluation ~ Conclusion Publications References References
: :

WORST-CASE TRAVERSAL TIME (WCTT): APPLICATION (2/2)

:3
%4
fl=2 =
[1 FIFO
(O Round-Robin

f1 | f2 |13 | f4
WCTT (cycles) | 25 | 68 | 76 | 76

With packets of /™3 =17 flits.

48/48

Intro Parallelism Extraction

Mapping/Scheduling

Code Generation

Communication

Interference

Real-Time NoC Evaluation

Conclusion

Publications

References

References

EVALUATION OF OUR LP-BASED HEURISTIC

Combinations

2

2

1

1

5

0

5

o

BC-HOE

BC-SCB

BC-TP

BR-HOE
BR-SCB
BR-TP

E1-HOE

E1-SCB

E1-TP

E2-HOE

E2-SCB

E2-TP

S-HOE

S-SCB

S-TP

T-HOE

T-SCB

T-TP

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

EVALUATION OF OUR LP-BASED HEURISTIC

binations

20

=
o

)]

BC-HOE
BC-SCB
BC-TP
BR-HOE
BR-SCB
BR-TP
E1-HOE
E1-SCB
EL-TP
E2-HOE
E2-SCB
E2-TP
S-HOE
s-scB
S-TP
T-HOE
T-SCB
T-TP

48/48

Intro Parallelism Extraction ~Mapping/Scheduling Code Generation ~ Communication Interference Real-Time NoC Evaluation Conclusion Publications References References

LP-BASED HEURISTIC VS. OPTIMAL EXPLORATION

» Optimal algorithms (100%): naive exploration, exploration with pruning

» Minimal rate as indicator of fairness

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00% -
30.00%
20.00%
10.00% -

0.00%

BC-HOE

BC-SCB

BR-HOE

BR-SCB

BR-TP

E1-HOE

E1-SCB

E1-TP

E2-HOE

E2-SCB

1
|
|
|
|
|
|
|
|
3

E2-TP

S-HOE

S-SCB

sTP

T-HOE

T-SCB

TP

W Rate_min
® Rate_awy

48/48

Intro Parallelism Extraction Mapping/Scheduling Code Generation ~Communication Interference Real-Time NoC ~ Evaluation Conclusion Publications References References
: :

[1] Bertsekas, D. P, Gallager, R. G., and Humblet, P. (1992). Data networks, vol. 2.
Prentice Hall International, Englewood Cliffs, New Jersey, 7632:493-536.

[2] Chen, S. and Nahrstedt, K. (1998). Maxmin fair routing in connection-oriented
networks. In Proc. Euro-Parallel and Distributed Systems Conf, pages 163—168.

48/48

	Intro
	Parallelism Extraction
	Mapping/Scheduling
	Code Generation
	Communication
	Interference
	Real-Time NoC
	Evaluation
	Conclusion
	Publications

